Weakly singular integral operators as mappings between function spaces
نویسندگان
چکیده
منابع مشابه
A Nyström method for weakly singular integral operators on surfaces
We describe a modified Nyström method for the discretization of the weakly singular boundary integral operators which arise from the formulation of linear elliptic boundary value problems as integral equations. Standard Nyström and collocation schemes proceed by representing functions via their values at a collection of quadrature nodes. Our method uses appropriately scaled function values in l...
متن کاملMonte Carlo approximation of weakly singular integral operators
We study the randomized approximation of weakly singular integral operators. For a suitable class of kernels having a standard type of singularity and being otherwise of finite smoothness, we develop a Monte Carlo multilevel method, give convergence estimates and prove lower bounds which show the optimality of this method and establish the complexity. As an application we obtain optimal methods...
متن کاملCauchy Singular Integral Operators in Weighted Spaces of Continuous Functions
We study the Cauchy singular integral operator SwI on (−1, 1), where |w| is a generalized Jacobi weight. This operator is considered in pairs of weighted spaces of continuous functions, where the weights u and v are generalized Jacobi weights with nonnegative exponents such that |w| = u/v. We introduce a certain polynomial approximation space which is well appropriated to serve as domain of def...
متن کاملPoly-Bergman spaces and two-dimensional singular integral operators
We describe a direct and transparent connection between the polyBergman type spaces on the upper half-plane and certain two dimensional singular integral operators. Mathematics Subject Classification (2000). 30G30, 45P05, 47B38.
متن کاملHardy Spaces, Commutators of Singular Integral Operators Related to Schrödinger Operators and Applications
Let L = −∆+ V be a Schrödinger operator on R, d ≥ 3, where V is a nonnegative function, V 6= 0, and belongs to the reverse Hölder class RHd/2. The purpose of this paper is three-fold. First, we prove a version of the classical theorem of Jones and Journé on weak∗-convergence in H L(R ). Secondly, we give a bilinear decomposition for the product space H L(R )×BMOL(R). Finally, we study the commu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Integral Equations and Applications
سال: 1988
ISSN: 0897-3962
DOI: 10.1216/jie-1988-1-2-303